SP-1352-4

SHIP POINT DEFENSE WEAPON SCHEDULING

23 April 1981

Prepared for:

NAVAL SURFACE WEAPON CENTER/DAHLGREN LABORATORY
Department of the Navy
Dahlgren, Virginia

WEAPON SCHEDULING BRIEFING OVERVIEW

R-7092

- PROGRAM DESCRIPTION
- ASSUMED SHIP CAPABILITIES AND LIMITATIONS
- WEAPON SCHEDULING ALGORITHMS
- PERFORMANCE COMPARISONS FOR REALISTIC SCENARIOS
- CONCLUSIONS AND RECOMMENDATIONS

PROGRAM DESCRIPTION

PROBLEM: DEFEND SHIP AGAINST ANTI-SHIP CRUISE MISSILE (ASCM) ATTACK

R-70929

- MULTIPLE SIMULTANEOUS ASCM ATTACKS ANTICIPATED
- SCHEDULE ASSETS FOR HARD KILL USING MISSILES AND GUNS

PROGRAM OVERVIEW

R-70930

• GOAL: DEVELOP WEAPON SCHEDULING METHODS FOR SHIP POINT DEFENSE AGAINST

ASCM THREATS
ASCM LAUNCH PLATFORMS

ACCOMPLISHMENTS

DEVELOPED AND COMPARED THREE SCHEDULING ALGORITHMS, ONE BASED ON AN OPTIMIZATION TECHNIQUE.

ASSESSED ALGORITHM PERFORMANCE AGAINST THREATS AND PLATFORMS IN REALISTIC SCENARIOS.

GENERAL CONCLUSION

R-70927

ALTHOUGH DIFFERENT SCHEDULING ALGORITHMS SOMETIMES GIVE IDENTICAL RESULTS, AN OPTIMIZED ALGORITHM CAN SIGNICANTLY ENHANCE SHIP SURVIVAL IN STRESSFUL SCENARIOS.

ASSUMED SHIP CAPABILITIES AND LIMITATIONS

POINT DEFENSE ASSETS

R-70932

- MODERN INTEGRATED SEARCH/TRACK RADAR
 UNLIMITED TRACK CAPACITY
 RANGE LIMITED TO 60,000 FT AGAINST SEASKIMMER ASCMS
- HARD KILL WEAPONS*

 ANTI-AIR WARFARE (AAW) MISSILES

 POINT DEFENSE GUNS (PDGs) FOR INNER DEFENSE

 SURFACE-TO-SURFACE WARFARE (SSW) CRUISE MISSILES AGAINST

 SURFACE PLATFORMS
- WEAPON SYSTEM FEATURES

AAW MISSILES LAUNCHED WITH FIELD-OF-FIRE LIMITATIONS AND RELOAD/SLEW TIME DELAYS

INNER DEADZONE EXISTS INSIDE WHICH INTERCEPTS CANNOT OCCUR

AAW MISSILES REQUIRE ONE SHIPBOARD ILLUMINATOR PER ASCM UNTIL INTERCEPT (TWO MISSILES LAUNCHED AT EACH ASCM)

PDG IS A STAND-ALONE SYSTEM WITH DELAYS, FIELD-OF-FIRE AND SEOUENTIAL ASCM ENGAGEMENT LIMITATIONS

SSW MISSILES, CANISTER-LAUNCHED AND AUTONOMOUSLY-GUIDED, AVOID LAUNCHER/ILLUMINATION RESTRICTIONS

^{*}NO (SOFT KILL) ELECTRONIC WARFARE ASSETS ARE CONSIDERED.

LAUNCHER, ILLUMINATOR, AND PDG FIELD-OF-FIRE ZONES

IN THIS AND ALL OTHER FIGURES DEPICTING THREAT ENGAGEMENTS, THE SHIP TRAVEL IS ALWAYS ASSU-MED TO BE FROM LEFT TO RIGHT.

CAPABILITY (LAUNCHER/ILLUMINATOR) PAIR SCHEDULING

COVERAGE OFFERED BY (L/I) PAIRS FOR DDG-47

R-51472

ZONES COVERED

С D E Α В Х L₁/I₁ X X X (L_i/I_j) PAIRS L_1/I_3 X X L₁/I₄ X X L_2/I_1 X X L₂/I₂ Х X L₂/I₃ X X Х X X X L₂/I₄ X X

> WHEN A PAIR BECOMES AVAILABLE, CONSIDER ASSIGNMENTS TO THREATS IN ZONES COVERED

WEAPON SCHEDULING ALGORITHMS

TASKS FOR ALL SCHEDULING ALGORITHMS

R-70934

- GIVE A PRIORITY TO EACH THREAT AS IT "APPEARS"
- ASSESS RESOURCE AVAILABILITY
- ESTABLISH A SCHEDULE FOR RESOURCE USE
- REPEAT THIS PROCESS FOR EACH NEW THREAT, ATTEMPTING
 (THROUGH SOME POLICY OR OPTIMIZATION CRITERION) TO PROTECT
 THE SYSTEM AGAINST SATURATION DUE TO UNFORSEEN EVENTS

^{*}i.e., IS DETECTED, TRACKED, AND ASSESSED AS A THREAT.

SCHEDULING ALGORITHMS EVALUATED

R-70935

• SUBOPTIMAL ASSIGNMENT POLICIES

HIGHEST-PRIORITY-BASED POLICY: FIRST-COME FIRST-SERVED USE-RESOURCES-WHEN-AVAILABLE POLICY: ACTIVE RESOURCE

• OPTIMIZING SEARCH OVER ALTERNATIVE SCHEDULES: BRANCH AND BOUND

FIRST-COME FIRST-SERVED (FCFS)

R-70936

- RANK THREATS IN ORDER OF INCREASING ESTIMATED TIME-TO-GO FOR ARRIVAL AT SHIP
- FOR EACH THREAT PROCEEDING DOWN THE LIST, ASSIGN THE NEXT AVAILABLE LAUNCHER/ILLUMINATOR PAIR*
- RESCHEDULE WHENEVER A NEW THREAT APPEARS

^{*}PRIORITY IN (L/I) PAIR ASSIGNMENT GOES TO TARGETS WITH LESSER TIME-TO-GO, THOUGH OTHERS MAY BE ENGAGEABLE AT EARLIER TIMES.

ACTIVE RESOURCE (AR)

R-70937

- AS WITH FCFS, RANK THREATS IN ORDER OF INCREASING TIME-TO-GO
- UNLIKE FCFS, ATTACK THE HIGHEST PRIORITY THREAT WHICH CAN BE ENGAGED BY ANY AVAILABLE (L/I) PAIR*
- RESCHEDULE FOR NEW THREATS

^{*}E.G., DO NOT WAIT TO FIRE UNTIL THE TOP PRIORITY THREAT CAN BE ENGAGED.

BRANCH AND BOUND (BAB) SCHEDULING

R-70926

PERFORMANCE CRITERIA

SEEK MINIMUM NUMBER OF ASCM LEAKERS IN PDG BLIND ZONES

ATTEMPT TO TIME-SPACE LEAKERS NOT IN BLIND ZONES SO THAT PDG CAN ENGAGE THEM

MAXIMIZE THE MINIMUM TIME-TO-GO ANY NON-LEAKER HAS BEFORE BEING DESTROYED

BRANCH AND BOUND (BAB) SCHEDULING (Cont.)

MOTIVATION FOR MAXIMIN CRITERION

TENDS TO MAXIMIZE THE TIME AVAILABLE FOR A SECOND ATTACK ON THE THREAT, IF NEEDED.

PERMITS MORE TIME TO RESPOND TO NEW THREATS

PERFORMANCE COMPARISONS FOR REALISTIC SCENARIOS

PRINCIPAL THREAT/DEFENSE PARAMETERS ASSUMED

P-70041

PARAMETER	VALUE		
Threat designation: speed	SSW/OW ₁ : 1000 f/sec		
	SSW/OW ₂ : 2000 f/sec		
	SSWW: 2000 f/sec		
	HFD: 2000 f/sec		
	DS: 1900 f/sec		
	UAO: 1300 f/sec		
	FSSWW ₁ : 2200 f/sec		
	FSSWW ₂ : 2800 f/sec		
	FHFD: 2600 f/sec		
AAW missile speed	2000 f/sec		
" " boost lag	1 sec		
" " launcher reload	8 sec		
time			
PDG threat engagement interval	12 sec		

ALL MOTIONS ARE VIEWED AS HORIZONTAL PLANE PROJECTIONS

SIMPLE ATTACK: ALL THREATS FROM SAME DIRECTION

- SCENARIO B SECOND ATTACK (ALL ALGORITHMS)
- ALL ALGORITHMS GIVE SAME RESULTS

PERFORMANCE AGAINST UP TO TWO SIMULTANEOUS THREATS FOR ONE LAUNCHER

R-70942

			TIME-TO-GO/RANGE-TO-GO		
THREAT NAME	SPEED (ft/sec)	OPEN FIRE RANGE (thousands of feet)	(sec)	(thousands of feet)	
			1ST THREAT	2ND THREAT	
SSW/OW ₁	1000	48	31.3/31.3	26/26	
SSW/OW ₂	2000	36	8.5/17	4.5/9*	
SSWW	2000	36	8.5/17	4.5/9*	
HFD	2000	65	15.8/31.5	11.8/23.5	
DS	1900	37.2	9.5/18.1	5.4/10.3	
UAO	1300	77	35.3/45.9	30.4/39.6	
FSSWW ₁	2200	33.6	6.8/15.0	3.0/6.6*	
FFSSWW ₂	2800	26.4	3.5/9.8*	0.2/0.5*	
FHFD	2600	83.1	13.5/35	10.0/26.0	

^{*}Inside dead zone.

- IDENTICAL PERFORMANCE FOR ALL SCHEDULING ALGORITHMS
- LAUNCHER DELAY IS CRITICAL AGAINST HIGH SPEED ASCMs
- FSSWW₂ ALWAYS ELUDES AAW MISSILE DEFENSE

MORE COMPLEX CASE: THREATS TIME-CLUSTERED IN DIFFERENT ZONES

• SCENARIO D (ALL ALGORITHMS)

SIMULTANEOUSLY ACTIVE ZONES GIVE DIFFERING PERFORMANCE

- ENGAGEMENT MODEL I (FCFS ALGORITHM)
- THREE LEAKERS

SIMULTANEOUSLY ACTIVE ZONES GIVE DIFFERING PERFORMANCE (Cont.)

• ENGAGEMENT MODEL I (AR ALGORITHM)

TWO LEAKERS

SIMULTANEOUSLY ACTIVE ZONES GIVE DIFFERING PERFORMANCE (Cont.)

• ENGAGEMENT MODEL I (BAB ALGORITHM)

COMPARISON SUMMARY FOR TWO SIMULTANEOUSLY ACTIVE ZONES

R-7094

<u>A</u>	LGORITH	<u>IM</u>	NO.	LEAKERS	NO.	PDG L	EAKERS [*]	"CLOSES"	r" non	LEAKER	NO. NON-L INSIDE DEAD-ZONE	TWO
	FCFS			3		2			5 sec			
	AR			2		2			6 sec		5 · 5	
	BAB			0		0			7 sec		5	

OBSERVATIONS

ONLY BAB PREVENTS ALL LEAKERS
PDG LEAKERS FOR FCFS AND AR ARRIVE IN A PDG BLIND ZONE

^{*}PDG LEAKERS ELUDE THE PDG INNER DEFENSE AND HIT THE SHIP.

SECOND CASE OF TWO SIMULTANEOUSLY ACTIVE ZONES

• REWORK OF ENGAGEMENT MODEL I FOR TWO THREAT TYPES (FCFS ALGORITHM)

SECOND CASE OF TWO SIMULTANEOUSLY ACTIVE ZONES (Cont.)

• REWORK OF ENGAGEMENT MODEL I FOR TWO THREAT TYPES (AR ALGORITHM)

SECOND CASE OF TWO SIMULTANEOUSLY ACTIVE ZONES (Cont.)

• REWORK OF ENGAGEMENT MODEL I FOR TWO THREAT TYPES (BAB ALGORITHM)

SECOND COMPARISON SUMMARY FOR TWO SIMULTANEOUSLY ACTIVE ZONES

R-70944

				NO. NON-LEAKERS INSIDE TWO
ALGORITHM	NO. LEAKERS	NO. PDG LEAKERS	"CLOSEST" NON LEAKER	DEAD-ZONE RADII
FCFS	1	0	6 sec	10
AR	1	1	5 sec	5
BAB	0	0	6 sec	5

OBSERVATIONS

AGAIN, BAB PREVENTS ALL LEAKERS
AR PERMITS A PDG LEAKER; FCFS DOES NOT

THREE SIMULTANEOUSLY ACTIVE ZONES

- TASC MODEL I (FCFS ALGORITHM)
- FOUR LEAKERS

THREE SIMULTANEOUSLY ACTIVE ZONES (Cont.)

• TASC MODEL I (AR ALGORITHM)

THREE SIMULTANEOUSLY ACTIVE ZONES (Cont.)

- TASC MODEL I (BAB ALGORITHM)
- THREE LEAKERS

COMPARISON SUMMARY FOR THREE SIMULTANEOUSLY ACTIVE ZONES

R-70945

ALGORITHM	NO. LEAKERS	NO. PDG LEAKERS	"CLOSEST" NON LEAKER	NO. NON-LEAKERS INSIDE TWO DEAD-ZONE RADII
FCFS	4	3	11 sec	, 7 , 2
A R	3	2	12 sec	6
BAB	3	1	12 sec	6

OBSERVATIONS

BAB ALLOWS ONLY ONE PDG LEAKER; TWO OTHER LEAKERS ARE SEPARATED IN TIME SO THAT PDG CAN ENGAGE THEM

OTHER ALGORITHMS ALLOW MORE PDG LEAKERS; FCFS PERMITS TWO LEAKERS OUTSIDE THE PDG BLIND ZONES BUT THE SECOND ONE IS TOO CLOSE IN TIME FOR ENGAGEMENT

SURFACE PLATFORM KILL WITH AAW MISSILES

R-70946

SCENARIO

THREE EQUIDISTANT PLATFORMS APPEAR AT 54,000 FEET RANGE AND APPROACH AT 54 F/SEC TO LAUNCH ASCMs

ALL PLATFORMS MUST BE KILLED WITHIN 90 SEC FROM THEIR APPEARANCE, CORRESPONDING TO 910 SEC PLATFORM TIME-TO-GO

DEFENSE MUST KILL EACH PLATFORM WITH SIX AAW MISSILES BEFORE THREAT ASCMS CAN BE LAUNCHED

^{*}RANGE OF 54,000 FEET AND 54 F/SEC CLOSING SPEED IMPLIES 1000 SEC PLATFORM TIME-TO-GO

SURFACE PLATFORM KILL WITH AAW MISSILES (Cont.)

• ATTEMPT TO DESTROY THREAT PLATFORMS BEFORE ASCM LAUNCH (FCFS AND AR ALGORITHMS)

R-63999

SURFACE PLATFORM KILL WITH AAW MISSILES (Cont.)

ATTEMPT TO DESTROY THREAT PLATFORMS BEFORE ASCM LAUNCH (BAB ALGORITHM)

R-63998

*COMPARISON SUMMARY FOR SURFACE PLATFORM KILL

R-70947

• EACH ALGORITHM KILLS ALL THREATS BEFORE ASCMS CAN BE LAUNCHED

 BAB OFFERS A SLIGHT IMPROVEMENT OVER THE OTHERS (MIDDLE PLATFORM IS KILLED 7.7 SEC EARLIER)

AN APPROACH TO THE GENERAL ANTI-PLATFORM PROBLEM (USING AAW AND SSW ASSETS)

^{*} FUTURE WORK SHOULD BE DIRECTED TOWARDS THESE TYPES OF ISSUES.

PRELIMINARY COMPUTATION LOAD ASSESSMENT

R-70948

PROCESSOR USED

IBM SYSTEM 370 COMPUTER

PROGRAMMED IN APL LANGUAGE (SLOW, WITH MUCH OVERHEAD)

CURRENT RESULTS

FCFS AND AR ASSIGNMENT POLICIES REQUIRE 0.025 SEC PER SCHEDULE

BAB OPTIMAL SEARCH TYPICALLY REQUIRES 0.1 - 1.0 SEC PER SCHEDULE, WITH AN EXTREME CASE OF 30 SEC

• FUTURE OPPORTUNITIES TO REDUCE BAB COMPUTATION LOAD

SPECIAL-PURPOSE COMPUTER/SOFTWARE COULD CUT TIMES BY 100:1

RESTRICTING SEARCH SCOPE AND DEPTH RADICALLY REDUCES SIZE OF TREE TO BE SEARCHED, PERHAPS WITH SMALL PERFORMANCE PENALTY

R-70949

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

R-70950

- THREE ALGORITHMS WERE DEVELOPED AND STUDIED UNDER REALISTIC
 SCENARIOS
- HARDWARE RESTRICTIONS (LAUNCHER DELAYS, ILLUMINATOR AVAILABILITY, ETC.) ARE CRUCIAL FACTORS, LIMITING ALL ALGORITHM PERFORMANCES, PARTICULARLY AGAINST SOME ASCMS
- IN RELATIVELY BENIGN SCENARIOS ALL ALGORITHMS BEHAVE THE SAME
- IN STRESSFUL SCENARIOS BAB CAN SIGNIFICANTLY ENHANCE SHIP SURVIVAL

PROTECTS SHIP AGAINST PDG CIRCUMVENTION BY LEAKERS TOO CLOSELY SPACED IN TIME OR APPROACHING IN PDG BLIND ZONES

LEAKERS ARE REDUCED 32% COMPARED TO FCFS AND 25% COMPARED TO AR ALGORITHMS

- SCHEDULING ALGORITHMS CAN BE SUCCESSFULLY APPLIED AGAINST SURFACE PLATFORMS
- DEDICATED PROCESSORS/SOFTWARE SHOULD PERMIT REAL-TIME COMPUTATION FOR BAB ALGORITHM IN SHIPBOARD APPLICATION

RECOMMENDATIONS

R-70951

• SCHEDULE OPTIMIZATION STUDIES SHOULD BE EXPANDED:

INCREASE BAB OPTIMIZATION EFFECTIVENESS

SCHEDULE WITH VARIABLE THREAT WEIGHTS

INTERFACE WITH NTDS FOR EARLIER THREAT WARNING

CONSIDER SCHEDULING PROBLEMS OF LOWER-DEFENSE-CAPABILITY SHIPS (SUCH AS THE O.H. PERRY CLASS OF FRIGATES)

ADDRESS AREA DEFENSE

- COMPUTATION CONTROL VIA DEDICATED COMPUTER HARDWARE/SOFTWARE SHOULD BE PURSUED
- ANTI-PLATFORM MISSION MERITS FURTHER STUDY (REDUCE THE NUMBER OF THREAT ASCMs LAUNCHED)

